Indoleamine 2, 3-dioxygenase (IDO) increases during renal fibrogenesis and its inhibition potentiates TGF-β 1-induced epithelial to mesenchymal transition
نویسندگان
چکیده
BACKGROUND Indoleamine 2, 3-dioxygenase (IDO) is an immunomodulatory molecule that has been implicated in several biological processes. Although IDO has been linked with some renal diseases, its role in renal fibrosis is still unclear. Because IDO may be modulated by TGF-β1, a potent fibrogenic molecule, we hypothesized that IDO could be involved in renal fibrosis, especially acting in the TGF-β1-induced tubular epithelial-mesenchymal transition (EMT). We analyzed the IDO expression and activity in a model of renal fibrogenesis, and the effect of the IDO inhibitor 1-methyl-tryptophan (MT) on TGF-β1-induced EMT using tubular cell culture. METHODS Male Wistar rats where submited to 7 days of UUO. Non-obstructed kidneys (CL) and kidneys from SHAM rats were used as controls. Masson's Tricrome and macrophages counting were used to chatacterize the tissue fibrosis. The EMT was analysed though immunohistochemistry and qRT-PCR. Immunohistochemestry in tissue has used to show IDO expression. MDCK cells were incubated with TGF- β1 to analyse IDO expression. Additionally, effects of TGF- β1 and the inhibition of IDO over the EMT process was acessed by immunoessays and scrath wound essay. RESULTS IDO was markedly expressed in cortical and medular tubules of the UUO kidneys. Similarly to the immunolocalizaton of TGF- β1, accompanied by loss of e-cadherin expression and an increase of mesenchymal markers. Results in vitro with MDCK cells, showed that IDO was increased after stimulus with TGF-β1, and treatment with MT potentiated its expression. MDCK stimulated with TGF-β1 had higher migratory activity (scratch-wound assay), which was exacerbated by MT treatment. CONCLUSIONS IDO is constitutively expressed in tubular cells and increases during renal fibrogenesis. Although IDO is induced by TGF-β1 in tubular cells, its chemical inhibitor acts as a profibrotic agent.
منابع مشابه
1-Methyl-D-Tryptophan Potentiates TGF-β-Induced Epithelial-Mesenchymal Transition in T24 Human Bladder Cancer Cells
Immune escape and metastasis are the hallmarks of several types of cancer including bladder cancer. One of the mechanisms involved in these processes has been linked to indoleamine 2,3-dioxygenase (IDO). Although IDO is classically recognized for its immunomodulatory property, it has presented nonimmunological effects in some tumors. TGF-β1 is believed to contribute to carcinoma development by ...
متن کاملIndoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملParathyroid hormone-related protein promotes epithelial-mesenchymal transition.
Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF t...
متن کاملRole for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis.
Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubu...
متن کاملImmunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells
Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are capable of differentiating into several lineages and possess immunomodulatory properties. In this study, we investigated the soluble factor-mediated immunomodulatory effects of hAM-MSCs. Mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation was suppressed by hAM-MSCs in a dose-dependent manner as well as hAM-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017